172 research outputs found

    Partial monoids: associativity and confluence

    Full text link
    A partial monoid PP is a set with a partial multiplication ×\times (and total identity 1P1_P) which satisfies some associativity axiom. The partial monoid PP may be embedded in a free monoid P∗P^* and the product ⋆\star is simulated by a string rewriting system on P∗P^* that consists in evaluating the concatenation of two letters as a product in PP, when it is defined, and a letter 1P1_P as the empty word Ï”\epsilon. In this paper we study the profound relations between confluence for such a system and associativity of the multiplication. Moreover we develop a reduction strategy to ensure confluence and which allows us to define a multiplication on normal forms associative up to a given congruence of P∗P^*. Finally we show that this operation is associative if, and only if, the rewriting system under consideration is confluent

    On Drinfel'd associators

    Full text link
    In 1986, in order to study the linear representations of the braid group B_nB\_ncoming from the monodromy of the Knizhnik-Zamolodchikov differential equations,Drinfel'd introduced a class of formal power series Ί\Phion noncommutative variables. These formal series can be considered as a class of associators. We here give an interpretation of them as well as some new tools over Noncommutative Evolution Equations. Asymptotic phenomena are also discussed

    M\"obius inversion formula for monoids with zero

    Full text link
    The M\"obius inversion formula, introduced during the 19th century in number theory, was generalized to a wide class of monoids called locally finite such as the free partially commutative, plactic and hypoplactic monoids for instance. In this contribution are developed and used some topological and algebraic notions for monoids with zero, similar to ordinary objects such as the (total) algebra of a monoid, the augmentation ideal or the star operation on proper series. The main concern is to extend the study of the M\"obius function to some monoids with zero, i.e., with an absorbing element, in particular the so-called Rees quotients of locally finite monoids. Some relations between the M\"obius functions of a monoid and its Rees quotient are also provided.Comment: 12 pages, r\'esum\'e \'etendu soumis \`a FPSAC 201

    Different goals in multiscale simulations and how to reach them

    Full text link
    In this paper we sum up our works on multiscale programs, mainly simulations. We first start with describing what multiscaling is about, how it helps perceiving signal from a background noise in a ?ow of data for example, for a direct perception by a user or for a further use by another program. We then give three examples of multiscale techniques we used in the past, maintaining a summary, using an environmental marker introducing an history in the data and finally using a knowledge on the behavior of the different scales to really handle them at the same time

    Tables, Memorized Semirings and Applications

    Full text link
    We define and construct a new data structure, the tables, this structure generalizes the (finite) kk-sets sets of Eilenberg \cite{Ei}, it is versatile (one can vary the letters, the words and the coefficients). We derive from this structure a new semiring (with several semiring structures) which can be applied to the needs of automatic processing multi-agents behaviour problems. The purpose of this account/paper is to present also the basic elements of this new structures from a combinatorial point of view. These structures present a bunch of properties. They will be endowed with several laws namely : Sum, Hadamard product, Cauchy product, Fuzzy operations (min, max, complemented product) Two groups of applications are presented. The first group is linked to the process of "forgetting" information in the tables. The second, linked to multi-agent systems, is announced by showing a methodology to manage emergent organization from individual behaviour models

    A formal calculus on the Riordan near algebra

    No full text
    29 p.International audienceThe Riordan group is the semi-direct product of a multiplicative group of invertible series and a group, under substitution, of non units. The Riordan near algebra, as introduced in this paper, is the Cartesian product of the algebra of formal power series and its principal ideal of non units, equipped with a product that extends the multiplication of the Riordan group. The later is naturally embedded as a subgroup of units into the former. In this paper, we prove the existence of a formal calculus on the Riordan algebra. This formal calculus plays a role similar to those of holomorphic calculi in the Banach or Fréchet algebras setting, but without the constraint of a radius of convergence. Using this calculus, we define \emph{en passant} a notion of generalized powers in the Riordan group
    • 

    corecore